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Modeling in Solution
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Important Observations

Various electrostatic effects for a solvated
molecule are often less important than for an
isolated gaseous molecule when the molecule
is dissolved in a solvent having a high
dielectric constant.

Charge separations in a solvated molecule
are often stabilized in a polar solvent.
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Energy Concepts

The molecular energy is
E(solvated) = E(gaseous) +    
            E(dissolution)
with a corresponding change
in the Hamiltonian
,(solvated) = ,(gaseous) +   
            ,(dissolution)
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,(dissolution) typically contains hundreds of
interaction terms for solute-inner solvation
sphere, inner solvation sphere-second solvation
sphere, ..., bulk solvent.

Inner solvation sphere

Bulk solvent

Second solvation sphere
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“Expense” and Accuracy I
Rigorous or Molecular

P “Brute Force” Method
< Model solute molecule
< Model solute molecule + 1 solvent molecule
< Model solute molecule + 2 solvent molecules
< Model solute molecule + 3 solvent molecules
< Continue until no change in results
< Drawbacks

– Need adequate description of solvent-solute and solvent-
solvent interactions

– Several hundred calculations
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PDynamics or Monte Carlo Method
< Model solute molecule
< Insert all solvent molecules
< Run molecular “dynamics simulator”
< Average results

PEffective Fragment Potential (EFP) Method
< Model solute molecule
< Represent each solvent molecule by single

analytical fragment potential
< Using solvent clusters can simplify calculations
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“Expense” and Accuracy II
Less Rigorous

PQM-MM Mixture Method
< Model solute molecule
< Model solvent using molecular mechanics

PLangevin Dipole Method
< Model solute molecule
< Place three-dimensional array of rotatable point

dipoles around solute (slide 3)
< Minimize energy
< Iterate
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PQM-Continuum Method
< Model solute and inner solvation sphere
< Model remainder of solvent as continuum

PContinuum Solvent Methods
< Assume solvent does not react directly with solute

by formation of covalent bonds
< Place solute in “cavity” of solvent
< More in a couple of minutes (slide 10)
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“Expense” and Accuracy III
Empirical / QSPR

PVirial equations using empirical parameters
PGroup additivity methods
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Details on Self-Consistent
Reaction Field (SCRF) Methods

Continuum Methods

PConcepts
< Solvent is a continuum of uniform dielectric

constant
< Solute molecule is placed in a cavity
< Cavity creation is destabilization of energy

Cavity
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PEnergy stabilization between solute and
solvent
< Solute within cavity induces a polarization in

solvent
< Solvent polarization induces an electric field in

cavity (reaction field)
< Reaction field interacts with solute dipole
< Note: if there is no dipole moment of solvent, then

solution results are identical to those of isolated
gaseous molecule
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PSCRF Methods differ by
< Description of solute (MM, semi-empirical, QM)
< Description of charge density
< Size and shape of cavity
< Description of solvent
< Description of polarization effects
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Onsager Model
PSpherical or ellipsoidal cavity
< Radius from gas phase structure
< Empirical radius from density and

molar mass
< Choice of radius is important for

accuracy

PCharge distribution of solute
expressed in terms of a dipole
or multipole expansion
< Multipole needed for nonpolar solute

PElectrostatic interactions
calculated analytically

PGood first approximation for
other methods

ε
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Tomasi Polarizable Continuum
Model (PCM)

PCavity based on union of
spheres centered on each atom
< Radius of sphere ~1.2 van der Waals

radius
PElectrostatic interactions

calculated numerically
< Iterated

PBetter approximations for cavity
are the Connally surfaces

ε

15

ε
Connally molecular
surface:  crevices
smoothed out

Connally solvent
accessible surface
(SAS): solvent
radius added
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Isodensity Polarized Continuum
Model (IPCM)

PCavity based on isosurface of electron
density
< SCF calculations on the cavity until converges

PElectrostatic interactions calculated
numerically

PSelf-Consistent Isodensity Polarized
Continuum Model (SCI-PCM)
< Cavity calculation embedded in SCF differently
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Conductor-like Screening Model
(COSMO)

PCavity based on solvent accessible surface
PElectrostatic interactions are more

approximate
< Solvent is considered a conductor except close to

cavity
< Interactions based on a conducting polygonal

surface and calculated numerically
< SCF calculations until convergence
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Solvation Model “x” (SMx)

PSolvent molecular interactions based on
orbital overlap
< SM1 - SM3 apply to aqueous solutions
< SM4 applies to alkanes
< SM5 applies to general solvents
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Accuracy of Continuum Models

Usually
          PCM > Onsager > COSMO
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Effect of High Dielectric Constant
on Structure

PM3 conformational analysis
(2 labels)

Emin(g) = -100.388 kcal mol-1

Emin(aq) = -115.895 kcal mol-1
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PM3 conformational analysis
(2 labels)

Emin(g) = -67.502 kcal mol-1

Emin(aq) = -131.957 kcal mol-1
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In gas phase
E(molecule) - E(zwitterion) = 
     (-100.388) -(-67.502) = -32.886 kcal mol-1
Molecular form is preferred structure.

In aqueous phase
E(molecule) - E(zwitterion) = 
     (-115.895) -(-131.957)  = 16.062 kcal mol-1
Zwitterion is preferred structure.
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Effect of Dissolution on UV-vis
Spectra
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ZINDO PM3

gas               λ = 473 nm
in CH3OH     λ = 475 nm
 (did not adjust cavity)
exp CH3OH  λ = 523 nm


